193 research outputs found

    A Review of Vegetation Phenological Metrics Extraction Using Time-Series, Multispectral Satellite Data

    Get PDF
    Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of climate-vegetation interactions, land use/land cover changes, and variation in year-to-year vegetation productivity. Satellite remote sensing data have been widely used for vegetation phenology monitoring over large geographic domains using various types of observations and methods over the past several decades. The goal of this paper is to present a detailed review of existing methods for phenology detection and emerging new techniques based on the analysis of time-series, multispectral remote sensing imagery. This paper summarizes the objective and applications of detecting general vegetation phenology stages (e.g., green onset, time or peak greenness, and growing season length) often termed “land surface phenology,” as well as more advanced methods that estimate species-specific phenological stages (e.g., silking stage of maize). Common data-processing methods, such as data smoothing, applied to prepare the time-series remote sensing observations to be applied to phenological detection methods are presented. Specific land surface phenology detection methods as well as species-specific phenology detection methods based on multispectral satellite data are then discussed. The impact of different error sources in the data on remote-sensing based phenology detection are also discussed in detail, as well as ways to reduce these uncertainties and errors. Joint analysis of multiscale observations ranging from satellite to more recent ground-based sensors is helpful for us to understand satellite-based phenology detection mechanism and extent phenology detection to regional scale in the future. Finally, emerging opportunities to further advance remote sensing of phenology is presented that includes observations from Cubesats, near-surface observations such as PhenoCams, and image data fusion techniques to improve the spatial resolution of time-series image data sets needed for phenological characterization

    A Novel Strategy to Reconstruct NDVI Time-Series with High Temporal Resolution from MODIS Multi-Temporal Composite Products

    Get PDF
    Vegetation indices (VIs) data derived from satellite imageries play a vital role in land surface vegetation and dynamic monitoring. Due to the excessive noises (e.g., cloud cover, atmospheric contamination) in daily VI data, temporal compositing methods are commonly used to produce composite data to minimize the negative influence of noise over a given compositing time interval. However, VI time series with high temporal resolution were preferred by many applications such as vegetation phenology and land change detections. This study presents a novel strategy named DAVIR-MUTCOP (DAily Vegetation Index Reconstruction based on MUlti-Temporal COmposite Products) method for normalized difference vegetation index (NDVI) time-series reconstruction with high temporal resolution. The core of the DAVIR-MUTCOP method is a combination of the advantages of both original daily and temporally composite products, and selecting more daily observations with high quality through the temporal variation of temporally corrected composite data. The DAVIR-MUTCOP method was applied to reconstruct high-quality NDVI time-series using MODIS multi-temporal products in two study areas in the continental United States (CONUS), i.e., three field experimental sites near Mead, Nebraska from 2001 to 2012 and forty-six AmeriFlux sites evenly distributed across CONUS from 2006 to 2010. In these two study areas, the DAVIR-MUTCOP method was also compared to several commonly used methods, i.e., the Harmonic Analysis of Time- Series (HANTS) method using original daily observations, Savitzky–Golay (SG) filtering using daily observations with cloud mask products as auxiliary data, and SG filtering using temporally corrected composite data. The results showed that the DAVIR-MUTCOP method significantly improved the temporal resolution of the reconstructed NDVI time series. It performed the best in reconstructing NDVI time-series across time and space (coefficient of determination (R2 = 0.93 ~ 0.94) between reconstructed NDVI and ground-observed LAI). DAVIR-MUTCOP method presented the highest robustness and accuracy with the change of the filtering parameter (R2 = 0.99 ~ 1.00, bias = 0.001, root mean square error (RMSE) = 0.020). Only MODIS data were used in this study; nevertheless, the DAVIR-MUTCOP method proposed a universal and potential way to reconstruct daily time series of other VIs or from other operational sensors, e.g., AVHRR and VIIRS

    FBXW8-Dependent Degradation of MRFAP1 in Anaphase Controls Mitotic Cell Death

    Get PDF
    Mof4 family associated protein 1 (MRFAP1) is a 14 kDa nuclear protein, which involves in maintaining normal histone modification levels by negatively regulating recruitment of the NuA4 (nucleosome acetyltransferase of H4) histone acetyltransferase complex to chromatin. MRFAP1 has been identified as one of the most up-regulated proteins after NEDD8 (neural precursor cell expressed developmentally down-regulated 8) inhibition in multiple human cell lines. However, the biological function of MRFAP1 and the E3 ligase that targets MRFAP1 for destruction remain mysterious. Here we show, by using an immunoprecipitation-based proteomics screen, that MRFAP1 is an interactor of the F-box protein FBXW8. MRFAP1 is degraded by means of the ubiquitin ligase Cul7/FBXW8 during mitotic anaphase-telophase transition and accumulated in mitotic metaphase. Overexpression of FBXW8 increased the polyubiquitination and decreased the stability of MRFAP1, whereas knockdown of FBXW8 prolonged the half-life of MRFAP1. Moreover, forced expression of MRFAP1 in HeLa cells caused growth retardation and genomic instability, leading to severe mitotic cell death. Thus, Cul7/FBXW8-mediated destruction of MRFAP1 is a regulatory component monitoring the anaphase-telophase transition and preventing genomic instability
    corecore